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Abstract: Recommender systems apply knowledge discovery 

techniques to the problem of making personalized 

recommendations for information, products or services during 

a live interaction. These systems, especially the k-nearest 

neighbor collaborative filtering based ones, are achieving 

widespread success on the Web. The tremendous growth in the 

amount of available information and the number of visitors 

toWeb sites in recent years poses some key challenges for 

recommender systems. These are: producing high quality 

recommendations, performing many recommendations per 

second for millions of users and items and achieving high 

coverage in the face of data sparsity. In traditional collaborative 

filtering systems the amount of work increases with the number 

of participants in the system. New recommender system 

technologies are needed that can quickly produce high quality 

recommendations, even for very large-scale problems. To 

address these issues we have explored item-based collaborative 

filtering techniques. Item based techniques first analyze the 

user-item matrix to identify relationships between different 

items, and then use these relationships to indirectly compute 

recommendations for users. In this paper we analyze different 

item-based recommendation generation algorithms. We look 

into different techniques for computing item-item similarities 

(e.g., item-item correlation vs. cosine similarities between item 

vectors) and different techniques for obtaining 

recommendations from them (e.g., weighted sum vs. regression 

model). Finally, we experimentally evaluate our results and 

compare them to the basic k-nearest neighbor approach. Our 

experiments suggest that item-based algorithms provide 

dramatically better performance than user-based algorithms, 

while at the same time providing better quality than the best 

available user-based algorithms. 

 

Keywords: K-Nearest Neighbor Approach, ACM, Mean 

Absolute Error (MAE), CF Algorithms. 

I. INTRODUCTION 

      The amount of information in the world is increasing far 

more quickly than our ability to process it. All of us have 

known the feeling of being overwhelmed by the number of new 

books, journal articles, and conference proceedings coming out 

each year. Technology has dramatically reduced the barriers to 

publishing and distributing information. Now it is time to 

create the technologies that can help us sift through all the 

available information to find that which is most valuable to us. 

One of the most promising such technologies is collaborative 

filtering. Collaborative filtering works by building a database 

of preferences for items by users. A new user, Neo, is 

matched against the database to discover neighbors, which 

are other users who have historically had similar taste to Neo. 

Items that the neighbors like are then recommended to Neo, 

as he will probably also like them. Collaborative filtering has 

been very successful in both research and practice, and in 

both information filtering applications and E-commerce 

applications. However, there remain important research 

questions in overcoming two fundamental challenges for 

collaborative filtering recommender systems. The first 

challenge is to improve the scalability of the collaborative 

filtering algorithms. These algorithms are able to search tens 

of thousands of potential neighbors in real-time, but the 

demands of modern systems are to search tens of millions of 

potential neighbors. Further, existing algorithms have 

performance problems with individual users for whom the 

site has large amounts of information. For instance, if a site is 

using browsing patterns as indications of content preference, 

it may have thousands of data points for its most frequent 

visitors. 

 

  These “long user rows” slow down the number of neighbors 

that can be searched per second, further reducing scalability. 

The second challenge is to improve the quality of the 

recommendations for the users. Users need recommendations 

they can trust to help them find items they will like. Users 

will” vote with their feet” by refusing to use recommender 

systems that are not consistently accurate for them. In some 

ways these two challenges are in conflict, since the less time 

an algorithm spends searching for neighbors, the more 

scalable it will be, and the worse its quality. For this reason, it 

is important to treat the two challenges simultaneously so the 

solutions discovered are both useful and practical. In this 

paper, we address these issues of recommender systems by 

applying a different approach–item-based algorithms. The 

bottleneck in conventional collaborative filtering algorithms 

is the search for neighbors among a large user population of 

potential neighbors. Item-based algorithms avoid this 

bottleneck by exploring the relationships between items first, 

rather than the relationships between users.Recommendations 

for users are computed by finding items that are similar to 

other items the user has liked. Because the relationships 

between items are relatively static, item-based algorithms 

may be able to provide the same quality as the user-based 

algorithms with less online computation. 
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II. RELATED WORK 

    In this section we briefly present some of the research 

literature related to collaborative filtering, recommender 

systems, data mining and personalization. Tapestry is one of 

the earliest implementations of collaborative filtering-based 

recommender systems. This system relied on the explicit 

opinions of people from a close-knit community, such as an 

office workgroup. However, recommender system for large 

communities cannot depend on each person knowing the 

others. Later, several ratings-based automated recommender 

systems were developed. The GroupLens research system 

provides a pseudonymous collaborative filtering solution for 

Usenet news and movies. Ringo and Video Recommender are 

email and web-based systems that generate recommendations 

on music and movies respectively. A special issue of 

Communications of the ACM presents a number of different 

recommender systems. Other technologies have also been 

applied to recommender systems, including Bayesian networks, 

clustering, and Horting. Bayesian networks create a model 

based on a training set with a decision tree at each node and 

edges representing user information. The model can be built 

off-line over a matter of hours or days. The resulting model is 

very small, very fast, and essentially as accurate as nearest 

neighbor methods. Bayesian networks may prove practical for 

environments in which knowledge of user preferences changes 

slowly with respect to the time needed to build the model but 

are not suitable for environments in which user preference 

models must be updated rapidly or frequently.  

 

      Clustering techniques work by identifying groups of users 

who appear to have similar preferences. Once the clusters are 

created, predictions for an individual can be made by averaging 

the opinions of the other users in that cluster. Some clustering 

techniques represent each users with partial participation in 

several clusters. The prediction is then an average across the 

clusters, weighted by degree of participation. Clustering 

techniques usually produce less-personal recommendations 

than other methods, and in some cases, the clusters have worse 

accuracy than nearest neighbor algorithms [6]. Once the 

clustering is complete, however, performance can be very 

good, since the size of the group that must be analyzed is much 

smaller. Clustering techniques can also be applied as a “first 

step” for shrinking the candidate set in a nearest neighbor 

algorithm or for distributing nearest-neighbor computation 

across several recommender engines. While dividing the 

population into clusters may hurt the accuracy or 

recommendations to users near the fringes of their assigned 

cluster, pre-clustering may be a worthwhile trade-off between 

accuracy and throughput. Horting is a graph-based technique in 

which nodes are users, and edges between nodes indicate 

degree of similarity between two users. Predictions are 

produced by walking the graph to nearby nodes and combining 

the opinions of the nearby users. Horting differs from nearest 

neighbor as the graph may be walked through other users who 

have not rated the item in question, thus exploring transitive 

relationships that nearest neighbor algorithms do not consider. 

In one study using synthetic data, Horting produced better 

predictions than a nearest neighbor algorithm. 

    Schafer et al., present a detailed taxonomy and examples of 

recommender systems used in E-commerce and how they can 

provide one-to-one personalization and at the same can 

capture customer loyalty. Although these systems have been 

successful in the past, their widespread use has exposed some 

of their limitations such as the problems of sparsity in the 

data set, problems associated with high dimensionality and so 

on. Sparsity problem in recommender system has been 

addressed. The problems associated with high dimensionality 

in recommender systems have been discussed, and 

application of dimensionality reduction techniques to address 

these issues has been investigated. Our work explores the 

extent to which item-based recommenders, a new class of 

recommender algorithms, are able to solve these problems. 

 

III. EXISTING SYSTEM 

     Recommender systems make use of community opinions 

to help users identify useful items from a considerably large 

search space. The technique used by many of these systems is 

collaborative filtering (CF), which analyzes past community 

opinions to find correlations of similar users and items to 

suggest k personalized items (e.g., movies) to a querying user 

u. Community opinions are expressed through explicit ratings 

represented by the triple (user, rating, item) that represents a 

user providing a numeric rating for an item. Myriad 

applications can produce location-based ratings that embed 

user and/or item locations. Existing recommendation 

techniques assume ratings are represented by the (user, rating, 

item) triple.  

 

Disadvantages of Existing System 

 The existing systems are ill-equipped to produce location 

aware recommendations. 

 The existing system provides more expensive operations 

to maintain the user partitioning structure. 

 The existing system does not provide spatial ratings. 

 

IV. PROPOSED SYSTEM 

     The proposed system address these issues of recommender 

systems by applying a different approach–item-based 

algorithms. The bottleneck in conventional collaborative 

filtering algorithms is the search for neighbors among a large 

user population of potential neighbors. Item-based algorithms 

avoid this bottleneck by exploring the relationships between 

items first, rather than the relationships between users. 

Recommendations for users are computed by finding items 

that are similar to other items the user has liked. Because the 

relationships between items are relatively static, item-based 

algorithms may be able to provide the same quality as the 

user-based algorithms with less online computation.  

 

Advantages of Proposed System: 

 This system supports a taxonomy of three novel classes 

of location-based ratings, namely, spatial ratings for non-

spatial items, non-spatial ratings for spatial items, and 

spatial ratings for spatial items. 

 System achieves higher locality gain using a better user 

partitioning data structure and algorithm. 
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 System exhibits a more flexible trade off between locality 

and scalability. System provides a more efficient way to 

maintain the user partitioning structure. 

 

  In this section we study a class of item-based recommendation 

algorithms for producing predictions to users. Unlike the user-

based collaborative filtering algorithm discussed in Section 2 

the item-based approach looks into the set of items the target 

user has rated and computes how similar they are to the target 

item i and then selects k most similar items fi1; i2; : : : ; ikg. At 

the same time their corresponding similarities fsi1; si2; : : : ; sik g 

are also computed. Once the most similar items are found, the 

prediction is then computed by taking a weighted average of 

the target user’s ratings on these similar items. We describe 

these two aspects namely, the similarity computation and the 

prediction generation in details here. 

 

A. Item Similarity Computation 

     One critical step in the item-based collaborative filtering 

algorithm is to compute the similarity between items and then 

to select the most similar items. The basic idea in similarity 

computation between two items i and j is to first isolate the 

users who have rated both of these items and then to apply a 

similarity computation technique to determine the similarity si;j. 

Fig1 illustrates this process, here the matrix rows represent 

users and the columns represent items. There are a number of 

different ways to compute the similarity between items. Here 

we present three such methods. These are cosine-based 

similarity, correlation-based similarity and adjusted-cosine 

similarity.  

 
Fig1. Isolation of the co-rated items and similarity 

computation. 

 

B. Adjusted Cosine Similarity 

    One fundamental difference between the similarity 

computation in user-based CF and item-based CF is that in case 

of user-based CF the similarity is computed along the rows of 

the matrix but in case of the item-based CF the similarity is 

computed along the columns i.e., each pair in the co-rated set 

corresponds to a different user (Figure 2). Computing similarity 

using basic cosine measure in item-based case has one 

important drawback–the difference in rating scale between 

different users are not taken into account. 

 
Fig2. Item-based collaborative filtering algorithm. 

 

    The adjusted cosine similarity offsets this drawback by 

subtracting the corresponding user average from each co-

rated pair. 

V. EXPERIMENTAL PROCEDURE 

A. Experimental steps  

  We started our experiments by first dividing the data set into 

a training and a test portion. Before starting full experimental 

evaluation of different algorithms we determined the 

sensitivity of different parameters to different algorithms and 

from the sensitivity plots we fixed the optimum values of 

these parameters and used them for the rest of the 

experiments. To determine the parameter sensitivity, we work 

only with the training data and further subdivide it into a 

training and test portion and carried on our experiments on 

them. For conducted a 10-fold cross validation of our 

experiments by randomly choosing different training and test 

sets each time and taking the average of the MAE values. 

 

B. Benchmark user-based system  

      To compare the performance of item-based prediction we 

also entered the training ratings set into a collaborative 

filtering recommendation engine that employs the Pearson 

nearest neighbor algorithm (user-user). For this purpose we 

implemented a flexible prediction engine that implements 

user-based CF algorithms. We tuned the algorithm to use the 

best published Pearson nearest neighbor algorithm and 

configured it to deliver the highest quality prediction without 

concern for performance (i.e., it considered every possible 

neighbor to form optimal neighborhoods). 

 

C. Experimental platform  

       All our experiments were implemented using C and 

compiled using optimization flag=06. We ran all our 

experiments on a linux based PC with Intel Pentium III 

processor having a speed of 600 MHz and 2GB of RAM. 
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VI. EXPERIMENTAL RESULTS 

      In this section we present our experimental results of 

applying item-based collaborative filtering techniques for 

generating predictions. Our results are mainly divided into two 

parts–quality results and performance results. In assessing the 

quality of recommendations, we first determined the sensitivity 

of some parameters before running the main experiment. These 

parameters include the neighborhood size, the value of the 

training/test ratio x, and effects of different similarity 

measures. For determining the sensitivity of various 

parameters, we focused only on the training data set and further 

divided it into a training and a test portion and used them to 

learn the parameters. 

 

A. Effect of Similarity Algorithms 

    We implemented three different similarity algorithms basic 

cosine, adjusted cosine and correlation as described in Section 

and tested them on our data sets. For each similarity 

algorithms, we implemented the algorithm to compute the 

neighborhood and used weighted sum algorithm to generate the 

prediction. We ran these experiments on our training data and 

used test set to compute Mean Absolute Error (MAE). Figure 3 

shows the experimental results. It can be observed from the 

results that offsetting the user-average for cosine similarity 

computation has clear advantage, as the MAE is significantly 

lower in this case. Hence, we select the adjusted cosine 

similarity for the rest of our experiments. 

 
Fig3. Impact of the similarity computation measure on 

item-based collaborative filtering algorithm. 

 

B. Sensitivity of Training/Test Ratio 

     To determine the sensitivity of density of the data set we 

carried out an experiment where we varied the value of x from 

0.2 to 0.9 in an increment of 0.1. For each of these training/test 

ratio values we ran our experiments using the two prediction 

generation techniques–basic weighted sum and regression 

based approach. Our results are shown in Figure 4. We observe 

that the quality of prediction increase as we increase x. The 

regression-based approach shows better results than the basic 

scheme for low values of x but as we increase x the quality 

tends to fall below the basic scheme. From the curves, we 

select xD0.8 as an optimum value for our subsequent 

experiments. 

 
Fig4. Sensitivity of the parameter x on the neighborhood 

size. 

 

C. Experiments with neighborhood size 

    The size of the neighborhood has significant impact on the 

prediction quality. To determine the sensitivity of this 

parameter, we performed an experiment where we varied the 

number of neighbors to be used and computed MAE. Our 

results are shown in Figure 4. We can observe that the size of 

neighborhood does affect the quality of prediction. But the 

two methods show different types of sensitivity. The basic 

item-item algorithm improves as we increase the 

neighborhood size from 10 to 30, after that the rate of 

increase diminishes and the curve tends to be flat. On the 

other hand, the regression-based algorithm shows decrease in 

prediction quality with increased number of neighbors. 

Considering both trends we select 30 as our optimal choice of 

neighborhood size. 

 

D. Quality Experiments 

      Once we obtain the optimal values of the parameters, we 

compare both of our item-based approaches with the 

benchmark user-based algorithm. We present the results in 

Figure 5. It can be observed from the charts that the basic 

item-item algorithm out performs the user based algorithm at 

all values of x (neighborhood size = 30 and all values of 

neighborhood size (x = 0.8). For example, at x = 0.5 user-user 

scheme has an MAE of 0.755 and item-item scheme shows 

an MAE of 0.749. Similarly at a neighborhood size of 60 

user-user and item-item schemes show MAE of 0.732 and 

0.726 respectively. The regression-based algorithm, however, 

shows interesting behavior. At low values of x and at low 

neighborhood size it out performs the other two algorithms 

but as the density of the data set is increased or as we add 

more neighbors it performs worse, even compared to the 

user-based algorithm. We also compared our algorithms 

against the naive nonpersonalized algorithm described. We 

draw two conclusions from these results. First, item-based 

algorithms provide better quality than the user-based 

algorithms at all sparsity levels. Second, regression-based 

algorithms perform better with very sparse data set, but as we 

add more data the quality goes down. We believe this 

happens as the regression model suffers from data overfiting 

at high density levels. 
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Fig5. Comparison of prediction quality of item-item and 

user-user collaborative filtering algorithms. We compare 

prediction qualities at x = 0.2; 0.5; 0.8 and 0.9. 

 

E. Performance Results 

    Having clearly established the superior quality of item-based 

algorithms over the user-based ones, we focus on the 

scalability challenges. As we discussed earlier, item-based 

similarity is more static and allows us to precompute the item 

neighborhood. This precomputation of the model has certain 

performance benefits. To make the system even more scalable 

we looked into the sensitivity of the model size and then looked 

into the impact of model size on the response time and 

throughput. 

 

F.  Sensitivity of the Model size 

    To experimentally determine the impact of the model size on 

the quality of the prediction, we selectively varied the number 

of items to be used for similarity computation from 25 to 200 

in an increment of 25. A model size of l means that we only 

considered l best similarity values for model building and later 

on used k of them for the prediction generation process, where 

k < l. Using the training data set we precomputed the item 

similarity using different model sizes and then used only the 

weighted sum prediction generation technique to provide the 

predictions.  

 
Fig6. Sensitivity of the model size on item-based 

collaborative filtering algorithm. 

        We then used the test data set to compute MAE and 

plotted the values. To compare with the full model size (i.e., 

model size = no. of items) we also ran the same test 

considering all similarity values and picked best k for 

prediction generation. We repeated the entire process for 

three different x values (training/test ratios). Figure 6 shows 

the plots at different x values. It can be observed from the 

plots that the MAE values get better as we increase the model 

size and the improvements are drastic at the beginning, but 

gradually slows down as we increase the model size. The 

most important observation from these plots is the high 

accuracy can be achieved using only a fraction of items. For 

example, at x = 0.3 the full item-item scheme provided an 

MAE of 0.7873, but using a model size of only 25, we were 

able to achieve an MAE value of 0.842. At x = 0.8 these 

numbers are even more appealing–for the full item-item we 

had an MAE of 0.726 but using a model size of only 25 we 

were able to obtain an MAE of 0.754, and using a model size 

of 50 the MAE was 0.738. In other words, at x = 0.8 we were 

within 96% and 98:3% of the full item-item scheme’s 

accuracy using only 1.9% and 3% of the items respectively. 

This model size sensitivity has important performance 

implications. It appears from the plots that it is useful to 

precompute the item similarities using only a fraction of 

items and yet possible to obtain good prediction quality. 

 

VII. CONCLUSION 

      Recommender systems are a powerful new technology for 

extracting additional value for a business from its user 

databases. These systems help users find items they want to 

buy from a business. Recommender systems benefit users by 

enabling them to find items they like. Conversely, they help 

the business by generating more sales. Recommender systems 

are rapidly becoming a crucial tool in E-commerce on the 

Web. Recommender systems are being stressed by the huge 

volume of user data in existing corporate databases, and will 

be stressed even more by the increasing volume of user data 

available on the Web. New technologies are needed that can 

dramatically improve the scalability of recommender 

systems. In this paper we presented and experimentally 

evaluated a new algorithm for CF-based recommender 

systems. Our results show that item-based techniques hold 

the promise of allowing CF-based algorithms to scale to large 

data sets and at the same time produce high-quality 

recommendations. 
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