

WWW.IJITECH.ORG

ISSN 2321-8665

Volume.06, Issue.01,

January-June, 2018,

Pages:0105-0110

Copyright @ 2018 IJIT. All rights reserved.

Item-Based Collaborative Filtering Recommendation Algorithms
KOTHURI SRAVYA SRI POORNIMA

1
, N. VIJAYA KUMAR

2

1
PG Scholar, Dept of CSE, LITAM, Dhullipalla, Guntur, AP, India.

2
Assistant Professor, Dept of CSE, LITAM, Dhullipalla, Guntur, AP, India.

Abstract: Recommender systems apply knowledge discovery

techniques to the problem of making personalized

recommendations for information, products or services during

a live interaction. These systems, especially the k-nearest

neighbor collaborative filtering based ones, are achieving

widespread success on the Web. The tremendous growth in the

amount of available information and the number of visitors

toWeb sites in recent years poses some key challenges for

recommender systems. These are: producing high quality

recommendations, performing many recommendations per

second for millions of users and items and achieving high

coverage in the face of data sparsity. In traditional collaborative

filtering systems the amount of work increases with the number

of participants in the system. New recommender system

technologies are needed that can quickly produce high quality

recommendations, even for very large-scale problems. To

address these issues we have explored item-based collaborative

filtering techniques. Item based techniques first analyze the

user-item matrix to identify relationships between different

items, and then use these relationships to indirectly compute

recommendations for users. In this paper we analyze different

item-based recommendation generation algorithms. We look

into different techniques for computing item-item similarities

(e.g., item-item correlation vs. cosine similarities between item

vectors) and different techniques for obtaining

recommendations from them (e.g., weighted sum vs. regression

model). Finally, we experimentally evaluate our results and

compare them to the basic k-nearest neighbor approach. Our

experiments suggest that item-based algorithms provide

dramatically better performance than user-based algorithms,

while at the same time providing better quality than the best

available user-based algorithms.

Keywords: K-Nearest Neighbor Approach, ACM, Mean

Absolute Error (MAE), CF Algorithms.

I. INTRODUCTION

 The amount of information in the world is increasing far

more quickly than our ability to process it. All of us have

known the feeling of being overwhelmed by the number of new

books, journal articles, and conference proceedings coming out

each year. Technology has dramatically reduced the barriers to

publishing and distributing information. Now it is time to

create the technologies that can help us sift through all the

available information to find that which is most valuable to us.

One of the most promising such technologies is collaborative

filtering. Collaborative filtering works by building a database

of preferences for items by users. A new user, Neo, is

matched against the database to discover neighbors, which

are other users who have historically had similar taste to Neo.

Items that the neighbors like are then recommended to Neo,

as he will probably also like them. Collaborative filtering has

been very successful in both research and practice, and in

both information filtering applications and E-commerce

applications. However, there remain important research

questions in overcoming two fundamental challenges for

collaborative filtering recommender systems. The first

challenge is to improve the scalability of the collaborative

filtering algorithms. These algorithms are able to search tens

of thousands of potential neighbors in real-time, but the

demands of modern systems are to search tens of millions of

potential neighbors. Further, existing algorithms have

performance problems with individual users for whom the

site has large amounts of information. For instance, if a site is

using browsing patterns as indications of content preference,

it may have thousands of data points for its most frequent

visitors.

 These “long user rows” slow down the number of neighbors

that can be searched per second, further reducing scalability.

The second challenge is to improve the quality of the

recommendations for the users. Users need recommendations

they can trust to help them find items they will like. Users

will” vote with their feet” by refusing to use recommender

systems that are not consistently accurate for them. In some

ways these two challenges are in conflict, since the less time

an algorithm spends searching for neighbors, the more

scalable it will be, and the worse its quality. For this reason, it

is important to treat the two challenges simultaneously so the

solutions discovered are both useful and practical. In this

paper, we address these issues of recommender systems by

applying a different approach–item-based algorithms. The

bottleneck in conventional collaborative filtering algorithms

is the search for neighbors among a large user population of

potential neighbors. Item-based algorithms avoid this

bottleneck by exploring the relationships between items first,

rather than the relationships between users.Recommendations

for users are computed by finding items that are similar to

other items the user has liked. Because the relationships

between items are relatively static, item-based algorithms

may be able to provide the same quality as the user-based

algorithms with less online computation.

KOTHURI SRAVYA SRI POORNIMA, N. VIJAYA KUMAR

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0105-0110

II. RELATED WORK

 In this section we briefly present some of the research

literature related to collaborative filtering, recommender

systems, data mining and personalization. Tapestry is one of

the earliest implementations of collaborative filtering-based

recommender systems. This system relied on the explicit

opinions of people from a close-knit community, such as an

office workgroup. However, recommender system for large

communities cannot depend on each person knowing the

others. Later, several ratings-based automated recommender

systems were developed. The GroupLens research system

provides a pseudonymous collaborative filtering solution for

Usenet news and movies. Ringo and Video Recommender are

email and web-based systems that generate recommendations

on music and movies respectively. A special issue of

Communications of the ACM presents a number of different

recommender systems. Other technologies have also been

applied to recommender systems, including Bayesian networks,

clustering, and Horting. Bayesian networks create a model

based on a training set with a decision tree at each node and

edges representing user information. The model can be built

off-line over a matter of hours or days. The resulting model is

very small, very fast, and essentially as accurate as nearest

neighbor methods. Bayesian networks may prove practical for

environments in which knowledge of user preferences changes

slowly with respect to the time needed to build the model but

are not suitable for environments in which user preference

models must be updated rapidly or frequently.

 Clustering techniques work by identifying groups of users

who appear to have similar preferences. Once the clusters are

created, predictions for an individual can be made by averaging

the opinions of the other users in that cluster. Some clustering

techniques represent each users with partial participation in

several clusters. The prediction is then an average across the

clusters, weighted by degree of participation. Clustering

techniques usually produce less-personal recommendations

than other methods, and in some cases, the clusters have worse

accuracy than nearest neighbor algorithms [6]. Once the

clustering is complete, however, performance can be very

good, since the size of the group that must be analyzed is much

smaller. Clustering techniques can also be applied as a “first

step” for shrinking the candidate set in a nearest neighbor

algorithm or for distributing nearest-neighbor computation

across several recommender engines. While dividing the

population into clusters may hurt the accuracy or

recommendations to users near the fringes of their assigned

cluster, pre-clustering may be a worthwhile trade-off between

accuracy and throughput. Horting is a graph-based technique in

which nodes are users, and edges between nodes indicate

degree of similarity between two users. Predictions are

produced by walking the graph to nearby nodes and combining

the opinions of the nearby users. Horting differs from nearest

neighbor as the graph may be walked through other users who

have not rated the item in question, thus exploring transitive

relationships that nearest neighbor algorithms do not consider.

In one study using synthetic data, Horting produced better

predictions than a nearest neighbor algorithm.

 Schafer et al., present a detailed taxonomy and examples of

recommender systems used in E-commerce and how they can

provide one-to-one personalization and at the same can

capture customer loyalty. Although these systems have been

successful in the past, their widespread use has exposed some

of their limitations such as the problems of sparsity in the

data set, problems associated with high dimensionality and so

on. Sparsity problem in recommender system has been

addressed. The problems associated with high dimensionality

in recommender systems have been discussed, and

application of dimensionality reduction techniques to address

these issues has been investigated. Our work explores the

extent to which item-based recommenders, a new class of

recommender algorithms, are able to solve these problems.

III. EXISTING SYSTEM

 Recommender systems make use of community opinions

to help users identify useful items from a considerably large

search space. The technique used by many of these systems is

collaborative filtering (CF), which analyzes past community

opinions to find correlations of similar users and items to

suggest k personalized items (e.g., movies) to a querying user

u. Community opinions are expressed through explicit ratings

represented by the triple (user, rating, item) that represents a

user providing a numeric rating for an item. Myriad

applications can produce location-based ratings that embed

user and/or item locations. Existing recommendation

techniques assume ratings are represented by the (user, rating,

item) triple.

Disadvantages of Existing System

 The existing systems are ill-equipped to produce location

aware recommendations.

 The existing system provides more expensive operations

to maintain the user partitioning structure.

 The existing system does not provide spatial ratings.

IV. PROPOSED SYSTEM

 The proposed system address these issues of recommender

systems by applying a different approach–item-based

algorithms. The bottleneck in conventional collaborative

filtering algorithms is the search for neighbors among a large

user population of potential neighbors. Item-based algorithms

avoid this bottleneck by exploring the relationships between

items first, rather than the relationships between users.

Recommendations for users are computed by finding items

that are similar to other items the user has liked. Because the

relationships between items are relatively static, item-based

algorithms may be able to provide the same quality as the

user-based algorithms with less online computation.

Advantages of Proposed System:

 This system supports a taxonomy of three novel classes

of location-based ratings, namely, spatial ratings for non-

spatial items, non-spatial ratings for spatial items, and

spatial ratings for spatial items.

 System achieves higher locality gain using a better user

partitioning data structure and algorithm.

Item-Based Collaborative Filtering Recommendation Algorithms

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0105-0110

 System exhibits a more flexible trade off between locality

and scalability. System provides a more efficient way to

maintain the user partitioning structure.

 In this section we study a class of item-based recommendation

algorithms for producing predictions to users. Unlike the user-

based collaborative filtering algorithm discussed in Section 2

the item-based approach looks into the set of items the target

user has rated and computes how similar they are to the target

item i and then selects k most similar items fi1; i2; : : : ; ikg. At

the same time their corresponding similarities fsi1; si2; : : : ; sik g

are also computed. Once the most similar items are found, the

prediction is then computed by taking a weighted average of

the target user’s ratings on these similar items. We describe

these two aspects namely, the similarity computation and the

prediction generation in details here.

A. Item Similarity Computation

 One critical step in the item-based collaborative filtering

algorithm is to compute the similarity between items and then

to select the most similar items. The basic idea in similarity

computation between two items i and j is to first isolate the

users who have rated both of these items and then to apply a

similarity computation technique to determine the similarity si;j.

Fig1 illustrates this process, here the matrix rows represent

users and the columns represent items. There are a number of

different ways to compute the similarity between items. Here

we present three such methods. These are cosine-based

similarity, correlation-based similarity and adjusted-cosine

similarity.

Fig1. Isolation of the co-rated items and similarity

computation.

B. Adjusted Cosine Similarity

 One fundamental difference between the similarity

computation in user-based CF and item-based CF is that in case

of user-based CF the similarity is computed along the rows of

the matrix but in case of the item-based CF the similarity is

computed along the columns i.e., each pair in the co-rated set

corresponds to a different user (Figure 2). Computing similarity

using basic cosine measure in item-based case has one

important drawback–the difference in rating scale between

different users are not taken into account.

Fig2. Item-based collaborative filtering algorithm.

 The adjusted cosine similarity offsets this drawback by

subtracting the corresponding user average from each co-

rated pair.

V. EXPERIMENTAL PROCEDURE

A. Experimental steps

 We started our experiments by first dividing the data set into

a training and a test portion. Before starting full experimental

evaluation of different algorithms we determined the

sensitivity of different parameters to different algorithms and

from the sensitivity plots we fixed the optimum values of

these parameters and used them for the rest of the

experiments. To determine the parameter sensitivity, we work

only with the training data and further subdivide it into a

training and test portion and carried on our experiments on

them. For conducted a 10-fold cross validation of our

experiments by randomly choosing different training and test

sets each time and taking the average of the MAE values.

B. Benchmark user-based system

 To compare the performance of item-based prediction we

also entered the training ratings set into a collaborative

filtering recommendation engine that employs the Pearson

nearest neighbor algorithm (user-user). For this purpose we

implemented a flexible prediction engine that implements

user-based CF algorithms. We tuned the algorithm to use the

best published Pearson nearest neighbor algorithm and

configured it to deliver the highest quality prediction without

concern for performance (i.e., it considered every possible

neighbor to form optimal neighborhoods).

C. Experimental platform

 All our experiments were implemented using C and

compiled using optimization flag=06. We ran all our

experiments on a linux based PC with Intel Pentium III

processor having a speed of 600 MHz and 2GB of RAM.

KOTHURI SRAVYA SRI POORNIMA, N. VIJAYA KUMAR

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0105-0110

VI. EXPERIMENTAL RESULTS

 In this section we present our experimental results of

applying item-based collaborative filtering techniques for

generating predictions. Our results are mainly divided into two

parts–quality results and performance results. In assessing the

quality of recommendations, we first determined the sensitivity

of some parameters before running the main experiment. These

parameters include the neighborhood size, the value of the

training/test ratio x, and effects of different similarity

measures. For determining the sensitivity of various

parameters, we focused only on the training data set and further

divided it into a training and a test portion and used them to

learn the parameters.

A. Effect of Similarity Algorithms

 We implemented three different similarity algorithms basic

cosine, adjusted cosine and correlation as described in Section

and tested them on our data sets. For each similarity

algorithms, we implemented the algorithm to compute the

neighborhood and used weighted sum algorithm to generate the

prediction. We ran these experiments on our training data and

used test set to compute Mean Absolute Error (MAE). Figure 3

shows the experimental results. It can be observed from the

results that offsetting the user-average for cosine similarity

computation has clear advantage, as the MAE is significantly

lower in this case. Hence, we select the adjusted cosine

similarity for the rest of our experiments.

Fig3. Impact of the similarity computation measure on

item-based collaborative filtering algorithm.

B. Sensitivity of Training/Test Ratio

 To determine the sensitivity of density of the data set we

carried out an experiment where we varied the value of x from

0.2 to 0.9 in an increment of 0.1. For each of these training/test

ratio values we ran our experiments using the two prediction

generation techniques–basic weighted sum and regression

based approach. Our results are shown in Figure 4. We observe

that the quality of prediction increase as we increase x. The

regression-based approach shows better results than the basic

scheme for low values of x but as we increase x the quality

tends to fall below the basic scheme. From the curves, we

select xD0.8 as an optimum value for our subsequent

experiments.

Fig4. Sensitivity of the parameter x on the neighborhood

size.

C. Experiments with neighborhood size

 The size of the neighborhood has significant impact on the

prediction quality. To determine the sensitivity of this

parameter, we performed an experiment where we varied the

number of neighbors to be used and computed MAE. Our

results are shown in Figure 4. We can observe that the size of

neighborhood does affect the quality of prediction. But the

two methods show different types of sensitivity. The basic

item-item algorithm improves as we increase the

neighborhood size from 10 to 30, after that the rate of

increase diminishes and the curve tends to be flat. On the

other hand, the regression-based algorithm shows decrease in

prediction quality with increased number of neighbors.

Considering both trends we select 30 as our optimal choice of

neighborhood size.

D. Quality Experiments

 Once we obtain the optimal values of the parameters, we

compare both of our item-based approaches with the

benchmark user-based algorithm. We present the results in

Figure 5. It can be observed from the charts that the basic

item-item algorithm out performs the user based algorithm at

all values of x (neighborhood size = 30 and all values of

neighborhood size (x = 0.8). For example, at x = 0.5 user-user

scheme has an MAE of 0.755 and item-item scheme shows

an MAE of 0.749. Similarly at a neighborhood size of 60

user-user and item-item schemes show MAE of 0.732 and

0.726 respectively. The regression-based algorithm, however,

shows interesting behavior. At low values of x and at low

neighborhood size it out performs the other two algorithms

but as the density of the data set is increased or as we add

more neighbors it performs worse, even compared to the

user-based algorithm. We also compared our algorithms

against the naive nonpersonalized algorithm described. We

draw two conclusions from these results. First, item-based

algorithms provide better quality than the user-based

algorithms at all sparsity levels. Second, regression-based

algorithms perform better with very sparse data set, but as we

add more data the quality goes down. We believe this

happens as the regression model suffers from data overfiting

at high density levels.

Item-Based Collaborative Filtering Recommendation Algorithms

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0105-0110

Fig5. Comparison of prediction quality of item-item and

user-user collaborative filtering algorithms. We compare

prediction qualities at x = 0.2; 0.5; 0.8 and 0.9.

E. Performance Results

 Having clearly established the superior quality of item-based

algorithms over the user-based ones, we focus on the

scalability challenges. As we discussed earlier, item-based

similarity is more static and allows us to precompute the item

neighborhood. This precomputation of the model has certain

performance benefits. To make the system even more scalable

we looked into the sensitivity of the model size and then looked

into the impact of model size on the response time and

throughput.

F. Sensitivity of the Model size

 To experimentally determine the impact of the model size on

the quality of the prediction, we selectively varied the number

of items to be used for similarity computation from 25 to 200

in an increment of 25. A model size of l means that we only

considered l best similarity values for model building and later

on used k of them for the prediction generation process, where

k < l. Using the training data set we precomputed the item

similarity using different model sizes and then used only the

weighted sum prediction generation technique to provide the

predictions.

Fig6. Sensitivity of the model size on item-based

collaborative filtering algorithm.

 We then used the test data set to compute MAE and

plotted the values. To compare with the full model size (i.e.,

model size = no. of items) we also ran the same test

considering all similarity values and picked best k for

prediction generation. We repeated the entire process for

three different x values (training/test ratios). Figure 6 shows

the plots at different x values. It can be observed from the

plots that the MAE values get better as we increase the model

size and the improvements are drastic at the beginning, but

gradually slows down as we increase the model size. The

most important observation from these plots is the high

accuracy can be achieved using only a fraction of items. For

example, at x = 0.3 the full item-item scheme provided an

MAE of 0.7873, but using a model size of only 25, we were

able to achieve an MAE value of 0.842. At x = 0.8 these

numbers are even more appealing–for the full item-item we

had an MAE of 0.726 but using a model size of only 25 we

were able to obtain an MAE of 0.754, and using a model size

of 50 the MAE was 0.738. In other words, at x = 0.8 we were

within 96% and 98:3% of the full item-item scheme’s

accuracy using only 1.9% and 3% of the items respectively.

This model size sensitivity has important performance

implications. It appears from the plots that it is useful to

precompute the item similarities using only a fraction of

items and yet possible to obtain good prediction quality.

VII. CONCLUSION

 Recommender systems are a powerful new technology for

extracting additional value for a business from its user

databases. These systems help users find items they want to

buy from a business. Recommender systems benefit users by

enabling them to find items they like. Conversely, they help

the business by generating more sales. Recommender systems

are rapidly becoming a crucial tool in E-commerce on the

Web. Recommender systems are being stressed by the huge

volume of user data in existing corporate databases, and will

be stressed even more by the increasing volume of user data

available on the Web. New technologies are needed that can

dramatically improve the scalability of recommender

systems. In this paper we presented and experimentally

evaluated a new algorithm for CF-based recommender

systems. Our results show that item-based techniques hold

the promise of allowing CF-based algorithms to scale to large

data sets and at the same time produce high-quality

recommendations.

VIII. REFERENCES

[1] Aggarwal, C. C., Wolf, J. L., Wu K., and Yu, P. S.

(1999). Horting Hatches an Egg: A New Graph-theoretic

Approach to Collaborative Filtering. In Proceedings of the

ACM KDD’99 Conference. San Diego, CA. pp. 201-212.

[2] Basu, C., Hirsh, H., and Cohen, W. (1998).

Recommendation as Classification: Using Social and

Content-based Information in Recommendation. In

Recommender System Workshop ’98. pp. 11-15.

[3] Berry, M. W., Dumais, S. T., and O’Brian, G. W. (1995).

Using Linear Algebra for Intelligent Information Retrieval.

SIAM Review, 37(4), pp. 573-595.

KOTHURI SRAVYA SRI POORNIMA, N. VIJAYA KUMAR

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0105-0110

[4] Billsus, D., and Pazzani, M. J. (1998). Learning

Collaborative Information Filters. In Proceedings of ICML ’98.

pp. 46-53.

[5] Brachman, R., J., Khabaza, T., Kloesgen, W., Piatetsky-

Shapiro, G., and Simoudis, E. 1996. Mining Business

Databases. Communications of the ACM, 39(11), pp. 42-48,

November.

[6] Breese, J. S., Heckerman, D., and Kadie, C. (1998).

Empirical Analysis of Predictive Algorithms for Collaborative

Filtering. In Proceedings of the 14th Conference on

Uncertainty in Artificial Intelligence, pp. 43-52.

[7] Cureton, E. E., and D’Agostino, R. B. (1983). Factor

Analysis: An Applied Approach. Lawrence Erlbaum associates

pubs. Hillsdale, NJ.

[8] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.

K., and Harshman, R. (1990). Indexing by Latent Semantic

Analysis. Journal of the American Society for Information

Science, 41(6), pp. 391-407.

[9] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and

Uthurusamy, R., Eds. (1996). Advances in Knowledge

Discovery and Data Mining. AAAI press/MIT press.

